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The Model

e We consider a dynamic incomplete market model with:
- a finite set A of agents endowed with H? (a € A)
- a finite sample space (Q,.%,P)
e At time t = 1,..., T the agents maximize preference functionals
Ui L(F1) — L(F)
that is normalized, monotone, translation invariant,
Ui(X+2Z)=Ui(X)+Z forall Ze L(%:),
and time consistent, i.e.,

UZ(X) = UZ (UZ4(X)) forall X € Fr1.

e The illiquid asset pays a dividend d; at time t = 1,..., T so that

;
Ry = Z dr.
t=1

THE ILLIQUID ASSET WILL BE PRICED IN EQUILIBRIUM.



Equilibrium in a Dynamic Model

Definition: A partial (in the bond market) equilibrium is a trading
strategy {(77,92)} along with a price process (R;) such that:

a) Each agent maximizes her utility from trading:

T T
Uz (Ha + ) HAS + ) DUAR: + dt)>

t=1 t=1
t T
> Uf <Ha + ) {2AS,+ D2AR} + > {n2ASs + 03AR5}>
s=1 s=t+1
forall t =1,..., T and continuation strategies {(7s,9s)}._,. ;.

b) The bond markets clears at any point in time:

d 9i=1 forall t=1,..,T.
acA

OUR GOAL IS TO PROVE THE EXISTENCE OF AN EQUILIBRIUM.



Pareto Optimal Risk Allocation

e Assume aggregate utility can be maximized at any time.

e In a one period model this meant:

Z u? (H" + 17751 + 193:‘?1) Z u? (W + H?+n751 + ﬂaRl)
a

for all strategies that satisfy market clearing because the space
S1:={nS1+9R : n,Y eR}

across which the agents exchange risks is exogenous as Ry = dj.

e In a multi-period model risk exchange at time t takes place in
St :=={nS1+I9R: : n,¥ € R}

which is generated endogenously because only Ry is initially
known!

WE NEED A MODIFICATION OF CONDITION (A).



Pareto Optimal Risk Allocation

Assumption (A’) For all X2 € L(.#7) and each subset
Ei+r1 C L(F¢41) we have

Z Ui (Xa + 771 ASe 1 + 97, Rt+1)
a

> Y U7 (X7 41741 ASe 1+ 0741 Rega)
a

for all strategies {7, ,} € L(.7:) that satisfy market clearing.
e By analogy to the static model let ®; : L(F41) — L(F:) be

X
®¢(X) = sup {Z Uz <W + V21 0P ASe1 + 9 (Rep1 + dt+1))
a

st. o’ 0% € Fy, > 97 = 1}
a

where V2 ; denotes the optimal “continuation utility” of a € A,

THE FUNCTION ®; SATISFY SIMILAR REPRESENTATIONS AS ®.



The representative agent

e By analogy to the static model we have that
(X)) = sup {E[& = X] — ¢e(&e)}

§t€Di1

where Z;41 is the set of all equivalent densities in L(-%#11) and

ee(&r) = sup {O(Y) - E[¢ * YIF]}

Y eL(Ft)

e In particular, there exists a super-gradient ét of ®; at zero:

®(0) = Sﬁ’t(ét)
and an equilibrium pricing measure is given defined recursively by

dP* 4 S
5=

WE HAVE A SIMILAR CHARACTERIZATION AS IN THE STATIC
CASE.



A Characterization and Existence of Equilibrium Result

Theorem: The process (Ry, ...R71) along with the trading strategy
{(n2,92)} is an equilibrium if and only if the following holds:

a) The bond market clears at any time, i.e., ZaGA 97 = 1.
b) The representative agent maximizes her utility:

:(0) = Z UP(VE L+ mi 1 ASe1 + 07 1 Req1 + digr)

= @t(&ﬂ) — R

where the optimal continuation utility is given by

-
V2= Ui (H? + ) njAS; + 9JAR;).
Jj=t+2
c) Asset prices are martingales under the measure —§ i.e.,

Si = E*[£t+l*5t+l|gt] and R;= E[§t+1*(Rt+1+dt+l)|yt]-

UNDER CONDITION (A’) AN EQUILIBRIUM EXISTS.



A Characterization and Existence of Equilibrium Result

Corollary: Under Condition (A’) an equilibrium exists.
e The equilibrium is defined recursively by backwards induction.

e The problem of dynamic equilibrium pricing can be reduced to a
sequence of static models.

e |t was key to assume that:
- preferences are translation invariant
- preferences are time consistent.

HoOw CAN WE GET MORE STRUCTURE INTO THE EQUILIBRIUM
DYNAMICS?



Equilibria in a Random Walk Framework

e Assume (.%;) is generated by d > 1 independent random walks:
t .
= Ab].
s=1

e Introducing sufficiently many extra random walks the model is
complete and we have the predictable representation property:

M
X = BIX| 7] + Y mi(X)Bby (X € L(Fes))
i=1

where the random coefficients 7i(X) are given by

i (X) = E[XAbj1|Z].

APPLYING THIS TO THE FUNCTIONAL U; YIELD A BACKWARD
RECURSION FOR THE PREFERENCES.



Equilibria in a Random Walk Framework
e Since the function U is .%; translation invariant we see that

UAX) = U2 (EIX|Z] + me(X) - Abeia)
— E[X|Zd] + 2 (m(X),w)

for any X € L(.%;) and some adapted convex function f?(x,w).

e Applying the predictable representation property to U7, ; yields:

1 (X) = E[UL 1 (X)|Fe] + 27 - Abeya

e Since the function U is time consistent we obtain

UF(X) = U(UZ1(X))
= E[UZ 1 (X)|F] + f2(Z3,1)

SUBTRACTING THESE EQUATIONS YIELDS A BACKWARD
DYNAMICS FOR THE PREFERENCES.



Equilibria in a Random Walk Framework
Proposition: The utility functionals satisfy the backward equation:

f(X) = UF(X) = £2(Z801) + 281 - Abeyr,  UT(X) = X.
e The conditional convolution can be expressed as

P(X)=E | X+ Z Vi + mRep1| e | — fi(me(X))

a

where f; is a point-wise minimizer of »__ f2(x/|A| + Z7 + ...).

Proposition: The conditional super-gradient ft+1 of ®; at zero is

£ev1=1—VF(0)- Absiq.

THIS YIELDS BACKWARD DYNAMICS FOR THE AGENTS’
OPTIMAL UTILITY.



Equilibria in a Random Walk Framework
e Applying the representation property to Y € L(.%;11) yields:

]E[ét'i'l Y|mZ] = E[Y|F] — m(Y) - V£(0).

e In particular, we see that

St = E[Set1|F] — Z21 - VE(0)
Re = E[Res1|F:] — ZE, - V£(0).

e Plugging all this into
Vi = U7 (Vi + 01 8Se + 021 8Ru ), VE =X

yields a backward dynamics for prices and optimal utilities.

EQUILIBRIUM PRICES CAN BE COMPUTED BY MEANS OF A
STOCHASTIC BACKWARD DIFFERENCE EQUATION.



Equilibria in a Random Walk Framework

Theorem: An equilibrium price process (R;) can be computed
recursively backwards by:
Rey1i—Re = Z&,-VH(0)+Z8, Abi1, Rr=H
-V = (Zt+17 Zta+1) + 271 - Dby, Vi=V7
where
ZEH =me(Re1) and 27, = (V).
Recall that Z2 enters the definition of f; so the system is coupled.

e It is important that R; and ZF are not computed simultaneously;
in continuous time, they will!

EQUILIBRIUM PRICES CAN BE NUMERICALLY COMPUTED IN AN
EFFICIENT WAY.



Equilibria in Brownian Motion Framework

e Assume (.%;) is generated by independent Brownian motions:
Ft=0(Bs:s=0,h,....isx h) t =1 xh.

where B = (B, ..., B?) is a d-dim. standard Brownian motion.

e In this case €2 is no longer finite and we cannot introduce finitely
many Brownian motions to complete the market.

e In this case the predictable representation is no longer exact.
e Hence the preference functionals are no longer monotone.

e In this case we can still optimize in every period, but we lose the
dynamic programming principle.

THE BEST WE CAN HOPE FOR IS AN APPROXIMATE
EQUILIBRIUM.



Equilibria in Brownian Motion Framework

e Define {(92,7)} and {(Ry, Vi)}ter analogously to the random
walk framework s.t.:

a) The market clearing condition holds at any time.
b) We have one-period optimality:

Uf (Vta—‘rh + 97, DASein+ 02 AF\’t+h)
> Uf (Van+9%0n DSeen+niin - AReyn)
where V{ = H? and

Vi = U2 <Ha +) DA, + ﬁjARs>

s>t

= Uf (Vta+1 + 07, pASein + ﬁ?+hARt+h) :

WE STILL OBTAIN A “BACKWARDS INDUCTION DYNAMICS” .



Equilibria in Brownian Motion Framework

e The process {(R:, Vi) }teT can again be constructed by
backwards induction:

R: = E[Reih | F] — hZE -V £(0), Rr=d
Vi = EIVi,| 7] -he (2R.22) ., vi=H°

e This is a descretized version of a coupled system of continuous
time BSDEs:

dYt - F(t, Zt)dt - thWh YT - H
e However, we not have a stochastic difference dynamics anymore.

WHAT HAPPENS IF WE LET THE STEP SIZE TEND TO ZERO?



